کارایی فرایند اکسیداسیون فنتون درکاهش آلودگی مواد شوینده از آب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی بهداشت محیط ، کارشناس و مدرس دانشگاه علوم پزشکی کرمانشاه

2 استادیار گروه مهندسی بهداشت محیط، دانشکده بهداشت و انستیتو تحقیقات بهداشتی، دانشگاه علوم پزشکی تهران

3 استاد گروه مهندسی بهداشت محیط، دانشکده بهداشت وانستیتو تحقیقات بهداشتی، دانشگاه علوم پزشکی تهران

4 کارشناس ارشد مهندسی بهداشت محیط، عضو هیئت علمی دانشکده بهداشت وانستیتو تحقیقات بهداشتی، دانشگاه علوم پزشکی تهران

چکیده

فرایندهای اکسیداسیون پیشرفته، همواره منجر به تولید رادیکال‌های بسیار فعال هیدروکسیل می‌گردند که این رادیکال‌ها، پتانسیل بالایی برای اکسیداسیون ترکیبات آلی دارند. یکی از فرایندهای اکسیداسیون شیمیایی، فنتون است که در آن، یون آهن به‌عنوان کاتالیست در یک محیط اسیدی با اکسیدان وارد واکنش شده و تولید رادیکال هیدروکسیل می‌نماید. این واکنش از نوع واکنش‌های اکسایش- احیا می‌باشد به این ترتیب که یون فلزی، انتقال یک الکترون را می‌پذیرد. کارایی این روش تحت تأثیر عوامل مختلفی از جمله pH، دما، غلظت آهن، پراکسید هیدروژن و زمان واکنش است. در این مطالعه نمونه‌های سنتتیک از سورفکتانت آنیونیک ABS و LAS که هر دو کاربرد وسیع خانگی و صنعتی دارند، تهیه گردید و تأثیر غلظتهای مختلف سولفات آهن و پر اکسید هیدروژن در زمان‌های مختلف روی حذف و تصفیه‌پذیری آنها در محلول آبی مورد مطالعه قرار گرفت. آزمایش‌ها در سیستم بسته در دستگاه جار (200 دور در دقیقه) و با غلظت اولیه دترجنت آنیونیک 200 میلی‌گرم در لیتر با pH ثابت 3 و دمای آزمایشگاه در زمان‌های 20، 40، 60 و 80 دقیقه انجام شد. نتایج نشان داد افزایش در غلظت اکسیدان و کاتالیست، کارایی حذف را افزایش می‌دهد. در غلظت H2O2 برابر750 میلی‌گرم در لیتر و یون فرو برابر130 میلی‌گرم در لیتر بیش از 86 درصد از  LASو ABS در زمان 80 دقیقه حذف گردید. در همین شرایط طی فرایند اکسیداسیون، COD نمونه‌های ABS از470 میلی‌گرم در لیتر به 187میلی‌گرم در لیتر کاهش یافت. نسبت BOD5/COD در زمان 60 دقیقه درغلظت 600 میلی‌گرم در لیتر H2O2 و 130میلی‌گرم در لیتر یون فرو، 0/225 بهبود یافت. اندازه‌گیری pH بعد از واکنش نشان می‌دهد که pH به‌علت تولید مواد حد واسط اسیدی از 3 به 2/6 کاهش می‌یابد که می‌تواند برای کنترل فرایند مورد بررسی قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Fenton Oxidation Efficiency in Removal of Detergents from Water

نویسندگان [English]

  • Seyed Alireza Mousavi 1
  • Amir Hossein Mahvi 2
  • Alireza Mesdaghinia 3
  • Simin Nasseri 3
  • Hamid Reza Honari 4
1 Instructor of Environmental Health Eng., Kermanshah University of Medical Sciences
2 Assist. Prof. of Environmental Health Eng., Faculty of Public Health and the Institute for Public Health Research, Tehran University of Medical Sciences
3 Prof., Faculty of Public Health and the Institute for Public Health Research, Tehran University of Medical Sciences.
4 Instructor of Environmental Health Eng., Faculty of Public Health and the Institute for Public Health Research, Tehran University of Medical Sciences
چکیده [English]

Advanced oxidation processes are associated with the production of very active hydroxyle radicals with a high potential for oxidation of organic compounds. One such process is Fenton process which reacts with ferrous ions in acidic media to produce a hydroxyle radical. It is an oxidation-reduction reaction in which the metallic ion accepts the transfer of one electron. A variety of factors such as pH, temperature, reaction time, and ferrous and H2O2 concentrations may affect the efficiency of the method. In this study, synthetic solutions of anionic LAS and ABS both having wide household and industrial applications were obtained and  used to evaluate the efficiency of Fenton process in the removal and treatability of different concentrations of ferrous and H2O2 for a variety of contact times. Experiments were performed with different concentrations of H2O2 and ferrous iron at a constant pH of 3 in a jar test apparatus  adjusted at 200 rpm and for different contact times (20, 40, 60, and 80 minutes). Results showed that increase in catalyst and oxidant concentrations increased removal efficiency. At a H2O2 concentration of 750 mg/l and a ferrous ion concentration of 130mg/l, 86% of LAS and ABS was removed in 80 minutes. Under these conditions, Fenton oxidation reduced the COD content of the ABS sample from 470 mg/L to 187 mg/L. The BOD5/COD ratio improved by 0.225 for a concentration of 600 mg/L of H2O2 and 130 mg/L of ferrous ion in 60 minuets. Measurements after the reaction revealed that pH reduced from 3 to 2.6 as a result of acidic intermediaries produced; this can be interesting for reaction control investigations.

کلیدواژه‌ها [English]

  • Pollution
  • Detergent
  • Fenton Reagent
  • Hydroxyle Radical
1- Munter, R. (2001). “Advanced oxidation processes-current status and prospects.” Proc. Estoninan Acad. Sci Chem., 50 (2), 59-80
2-Kestioglu, K., Yonar, T., and Azbar, N. (2005). “Feasibility of physico-chemical treatment and advanced oxidation processes(AOPs) as a means of pretreatment of oilve mill effluent.” J. Process Biochemistry, 40 (7), 2409-2416.
3- Bergendahl, J., and O'shaughnessy, J. (2004). “Application of advanced oxidation for waste treatment.” Presented at the new England water Environment Association Annual Conference,Boston.
4- موحدیان عطار، ح.، رضایی، ر. (1385). بررسی کارایی فناوری اکسیداسیون فتوشیمیایی پیشرفته (AOPs) در تجزیه رنگزای پلی‌آزوی مستقیم با فرایند UV/H2O2. فصلنامه علمی- پژوهشی آب وفاضلاب، 59، 75-83.
5-Chan, K.H., and Chu, W. (2007). “Modeling the reaction kinetics of Fenton’s process on the removal of atrazine.” J. Chemosphere, 51 (4), 305-311.
6-Momani, F. (2003). “Combination of photo – oxidation processes with biological treatment.” Ph.D. Thesis, Universitat de Barcelona.
7- Sutherson, S.S. (2002). Natural and enhanced remediation system, 1st Ed., Lewis publisher,New York.
8- Reference library peroxide applications, industrial wastewater.(2005). “Fenton’s reagent-iron-catalyzed hydrogen peroxide.”<http://www.H2O2.com/applications/industrial wastewater/bodcod.html> (6/26/2005).
9- Sedlak, D. (1991). “Aqueous oxidation of polychlorinated biphenyl’s by hydroxyl radical.” Environ. Sci., Tech., 25(8), 1419-1427.
10- Reference library peroxide applications, industrial wastewater. (2005). “BOD and COD reduction-using hydrogen peroxide.” <http://www.H2O2.com/ applications/industrial wastewater/bodcod.html > (6/26/2005).
11-Marco, A. E., and Splugus, G. S. (1997). “How and why combined chemical and biological processes for waste watertreatment.” Wat. Sci. Tech., 35 (4), 321-327.
12-Ostra, M., Ubide, C., and Zuriarrain, J. (2007). “ Interference modeling, experimental design and pre- concentration steps in validation of the fentons reagent for pesticides determination.” J. Analytica Chimical, 584, 228-235.
13- Tchobanoglous, G., and Burton, F. (2003). Wastewater engineering treatment and reuse, 4th Ed., McGraw-Hill Metcalf andEddy,New York.
14- Water Environment Federation. (1994). Pretreatment of industrial wastes, manual of practice No. FD-3,Alexandria,Va.
15- Lin, S. H., and Lin C. M. (1999). “Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation.” Wat. Res., 33 (7), 1735-1741.
17- Fauser, P., and Sqrensen, P.B. (2001). Phthalates, nonylphenols and LAS in Roskilde wastewater treatment plant, Fate modeling based on measured concentrations in wastewater and sludge, ministry of Environmental and Energy, National Environmental Research Institute,Roskilde , Danish Environmental Protection Agency (DEPA), Net Technical Report No354.16-Torbeno, M., and Hello, B.B. (2001). Environmental and health assessment of substances in household detergents and cosmetic detergent products, Environmental Proj. Danish, EPA, No.615,Denmark.
18- Srinivasarao, C., Herbert, E.A., and Steren, K.D. (1994). “Effects and fate of anionic surfactants used in household cleaning products.” Journal of Environmental Engineering, 10 (3), 1091-1097.
19- محمدحسینی،ن.، و زینالی دانالو،م.( 1380). شوینده‌ها و محیط زیست، پژوهشکده توسعه صنایع شیمیایی ایران، تهران.
20- صادقی، م.، مصداقی نیا، ع.،بادکوبی، ا.، و نبی‌زاده، ر. (1385). افزایش تجزیه پذیری بیولوژیکی محلولهای مائی متیل ترشیری بوتیل‌اتر(MTBE) به وسیله اکسیداسیون پیشرفته. فصلنامه علمی- پژوهشی آب وفاضلاب، 58، 54-61.
21-Papadopoulous, A., and Savvides,C. (1997). “An assessment of the quality and treatment of detergent wastewater.” Wat. Sci. Tech., 36 (2-3), 377-381.
22- دهقانی، م. ه. (1380). راهنمای بهداشت محیط بیمارستان، چاپ اول، انتشارات نخل، تهران.
23-Schroder, F.R., and Schmiitt, M.U. (2001). “The effects of wastewater treatment on ellimination of anionic surfactants.” Surfactants, Waste Manage, 12 (19),125-131.
24- محوی، ا. ح.، هنری، ح. ر.، و موسوی، س. ع. (1384). مخاطرات زیست محیطی ناشی از صنایع شوینده وپاک کننده در ایران. فصلنامه پژوهشی دانشکده بهداشت یزد (طلوع بهداشت)، 4(1)، 50-57.
25-Beltran, F.J., Garcia-Araya, J.F., and Alvarez, P.M. (2000). “Continuous flow integrated chemical (ozone) – activated sludge system treating combined agroindustrial- domestic wastewater.” J. Environmental Progress, 19, 28-35.
26-Adams, C.D., Spitzer, S., and Cowan, R.M. (1996). “  Biodegradation of nonionic surfactants and effects of oxidative pretreatment.” J. Environ. Eng, 122, 477- 483.
27- Sanz, J., Lombranda, J. I. L., and deluis, A. (2003).“Ultraviolet–H2O2 oxidation of surfactants.” Environ. Chem. Lett. Springer – Verlag, 1, 32-37.
28-WEF, APHA, AWWA. (1998). Standard methods for examination of water and wastewater, 20 Ed.,WashingtonD.C.
29- رضایی، ع.، قانعیان، م.ت.، هاشمیان، س.ج.، موسوی، غ.، و غنی زاده، ق. (1387). بررسی اثر مداخله‌ای پرسولفات پتاسیم و پر اکسید هیدروژن در میزان اکسیداسیون مورد نیاز شیمیایی. فصلنامه علمی- پژوهشی آب وفاضلاب، 66، 77-81.
30- علی‌آبادی، م.، فاضل، ش.، وهاب‌زاده، ف. (1385). کاربرد عملیات اسید کراکینگ با فرایند فنتون. فصلنامه علمی- پژوهشی آب وفاضلاب، 57، 30-36.
31-Deng, Y., and Englehardt, J. D. ( 2006). “Treatment of landfill leachate by the fenton processes.” Water Res., 40 (20) 3683-3694.
32-Lopez, A., Pagano, M., Volpe, A., and Di Pinto, A.C. )2004(.“Fentons pre-treatment of mature landfill leachate.” Chemosphere, 54 (7) 1005-1010.
33-Sheng, H. L., and Cho., C. L. (1997). “Fenton process for treatment of desizing wastewater.” Wat. Res., 31 (8), 2050-2056.
34- Kim, Y. O., Nam, H.U.K., and Park, Y.R.(2004). “Fenton oxidation process control suing oxidation-reduction potential measurement forpigment wastewater treatment.” Korean J. Chem. Eng., 21 (4), 801-805.