هاشمینژاد, هستی, کریمی جشنی, ایوب, طالب بیدختی, ناصر, منجمی, پرویز. (1388). بررسی آزمایشگاهی تأثیر pH، دما و پراکسید هیدروژن بر حذف بنزین از آب توسط کربن فعال دانهای. مجله آب و فاضلاب, 20(4), 43-53.
هستی هاشمینژاد; ایوب کریمی جشنی; ناصر طالب بیدختی; پرویز منجمی. "بررسی آزمایشگاهی تأثیر pH، دما و پراکسید هیدروژن بر حذف بنزین از آب توسط کربن فعال دانهای". مجله آب و فاضلاب, 20, 4, 1388, 43-53.
هاشمینژاد, هستی, کریمی جشنی, ایوب, طالب بیدختی, ناصر, منجمی, پرویز. (1388). 'بررسی آزمایشگاهی تأثیر pH، دما و پراکسید هیدروژن بر حذف بنزین از آب توسط کربن فعال دانهای', مجله آب و فاضلاب, 20(4), pp. 43-53.
هاشمینژاد, هستی, کریمی جشنی, ایوب, طالب بیدختی, ناصر, منجمی, پرویز. بررسی آزمایشگاهی تأثیر pH، دما و پراکسید هیدروژن بر حذف بنزین از آب توسط کربن فعال دانهای. مجله آب و فاضلاب, 1388; 20(4): 43-53.
بررسی آزمایشگاهی تأثیر pH، دما و پراکسید هیدروژن بر حذف بنزین از آب توسط کربن فعال دانهای
1استادیار، دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان
2استادیار، بخش مهندسی راه، ساختمان و محیط زیست، دانشگاه شیراز
3استاد، بخش مهندسی راه، ساختمان و محیط زیست، دانشگاه شیراز
چکیده
امروزه آلودگی آب با مواد نفتی یکی از مشکلات زیستمحیطی جدی در ایران است. نشت بنزین از مخازن ذخیره قدیمی، مخازن پمپ بنزینها و بهخصوص پالایشگاهها یکی از دلایل مهم این آلودگی بهشمار میرود. در این تحقیق، جذب ترکیبات نفتی (بنزین) توسط کربن فعال دانهای بهعنوان یک جاذب مؤثر با روش جذب ناپیوسته مورد بررسی قرار گرفت. نتایج بررسیها نشان داد که ظرفیت جذب کربن فعال تابع پارامترهایی مانند pH، دما و غلظت پراکسید هیدروژن میباشد و بیشینه ظرفیت تعادل کربن فعال برای حذف ترکیبات بنزین در pH برابر 8 بوده و میزان جذب ترکیبات نفتی توسط کربن فعال با افزایش دما (کاهش نیروی واندروالس بین جاذب و آلاینده) و غلظت پراکسید هیدروژن در سیستم (کاهش غلظت اولیه مواد آلاینده به دلیل اکسیداسیون) کاهش مییابد. به اینترتیب مقدار بیشینه جذب مواد نفتی در pH برابر 8 و دمای 10 درجه سلسیوس بهمقدارmg COD/g GAC 129/05 تعیین گردید. دادههای آزمایشگاهی بهدست آمده در این مطالعه با دو مدل فروندلیچ و لانگمیر برازش داده شدند و ضریب تعیین بهدست آمده حکایت از مناسب بودن مدل فروندلیچ دارد. همچنین با تحلیل رگرسیون مدلی با ضریب تعیین 0/981 ، برای توصیف بهتر تغییرات میزان جذب در حالت تعادل با در نظر گرفتن تأثیرات pH، دما و پراکسید هیدروژن، ارائه گردید. بهطور کلی مدل پیشنهادی دارای ضریب تعیین بالاتری نسبت به مدل فروندلیچ میباشد.
1Assist. Prof., Dept. of Civil Eng., Isfahan University of Technology
2Assist. Prof., Dept. of Civil and Environmental Engineering, Shiraz University
3Prof., Dept. of Civil and Environmental Engineering, Shiraz University
چکیده [English]
Contamination of water with petroleum compounds is a serious environmental problem in Iran. Old fuel storage tanks, gasoline stations, and oil refineries are the main sources of gasoline leakage into water resources. In this study, the batch adsorption technique was used to investigate adsorption of petroleum compounds (gasoline) on granular activated carbon. Experiments showed that the adsorption capacity of activated carbon is a function of pH, temperature, and H2O2 concentration in solution. Maximum adsorption of petroleum compounds was obtained at pH of 8. Adsorption of petroleum compounds was increased by decreasing temperature (due to decreasing van der Waals forces between the adsorbent and the adsorbate) and H2O2 concentration in solution (due to the decrease in the initial concentration of the adsorbate by oxidation) . In this experiment, the maximum equilibrium capacity of granular activated carbon was 129.05 mg COD/g GAC at pH 8 and at an ambient temperature of 10˚C. The experimental adsorption data were fitted to the Freundlich and Langmuir adsorption model. The correlation coefficients calculated indicate that the Freundlich model was best fitted. Also, the regression analysis was used with a correlation coefficient of 0.981 to develop a model for describing the relationship between absorption variation in equilibrium state, pH, temperature, and H2O2. On the whole, the correlation coefficient calculated by the proposed model was found to be higher than Freundlich’s.
8- Sullivan, E. J., Bow man, R. S., Katz, L., and Kinney, k. (2005). “Water treatment technology for oil and gas produced water.” <http://www. unm.edu /~cstp /reports /H2o_session_4/4-5_sullivan.pdf> (21 Jul 2007).
9- Bentio, J.M., Guillermo, R., Enrique, O., Eva, F., Cambiella, A., Carmen, P., and Jose, C. (2002). “Design and construction of a modular pilot plant for the treatment of oil- containing wastewaters.” Desalination, 147, 5-10.
10- Cho, S.Y., Park, S.S., Kim, S.J., and Kin, T.Y. (2006). “Adsorption and desorption characteristics of 2-Methyl 4-Chlorophenoxy Acetic Acid on to activated carbon.” Korean J. of Chemical Engineering, 23(4), 638-644.
11- Zhang, C., Li, Q., and Kang, C. (2005). “Wastewater produced from an oilfield and continuous treatment with an activated carbon.” Process Biochemistry, 40(2), 873-877.
12- کرمانی، م.، و بینا، ب. (1387). ”کاربرد خاکستر سبوس برنج و کربن فعال جهت حذف فنل از محلولهای آبی.“دومین همایش تخصصی مهندسی محیط زیست، دانشگاه تهران، تهران.
13- سعیدی، م.، و پژوهشفر، س.پ. (1387). ”جذب سطحی فنل موجود در فاضلاب صنعتی به کمک کربن فعال و کربن پوست بادام و گردو.“دومین همایش تخصصی مهندسی محیط زیست، دانشگاه تهران، تهران.
14- بیات، ا.، آقامیری، س.ف.، محب، ا.، و وکیلینژاد، غ. (1383) ”جذب مواد نفتی از روی آب دریاها و اقیانوسها توسط گرافیت ورقه ورقه.“نهمین کنگره ملی مهندسی شیمی ایران، دانشگاه علم و صنعت ایران، تهران.
15- سعادت، س. (1385). ”تصفیهپذیری فیزیکی شیمیایی پساب دارای روغن پالایشگاه نفت شیراز درمقیاس آزمایشگاهی.“پایان نامه کارشناسی ارشد، مهندسی راه و ساختمان، دانشگاه شیراز.
16- Karimi- Jashni, A. (1994). “Effect of pH on adsorption and desorption equilibria and kinetics of 2- Nitrophenol and phenol onto two activated carbons.” M.Sc. Thesis,University of Ottawa,Ontario,Canada.
17- APHA. (2005). Standard Method for Examination of Water and Wastewater, 21 Ed., Publication Office American Public health Association,New York,Washington D.C.
18- Smith, M.B., and March, J. (2001). March’s advanced organic chemistry, 5th Ed., John Wiley and Sons Inc.,New York.
19- Shukla, S.S., Yu. L.J., Dorris, K.L., and Shukla, A. (2005). “Removal of Nickel from aqueous solutions by sawdust.” J. Hazard. Mater., 121, 243-246.
20- Zogorski, J. S., and Faust, S.D. (1978). “Equilibra of adsorption of phenol by granular activated carbon.” Chemistry of Wastewater Technology,Ann Arbor,Michigan.
21- Hameed, B.H., Chin, L.H., and Rengaraj, S. (2008). “Adsorption of 4-Chlorophenol on to activated carbon prepared from rattan Sawdust.” Desalination, 225, 185-198.
22- Cooney, D.O., and Wijaya, J. (1987). “Effect of pH and added salts on the adsorption of ionizable organic species on to activated carbon from aqueous solution.” Proc. 2nd Eng. Found., Conf. Fundam. Adsorpt., LiAPisNew York, 185- 194.
23- Cambiella, A., Ortea, E., Rios, G., Bentio, J.M., Pazos, C., and Coca, J. (2006). “Treatment of oil-in-water emulsions: performance of a sawdust bed filter.” J. Hazard. Mater., 131, 195-199.
24- Snoeyink, V.L. (1968). “Adsorption of strong acids, phenol and 4-Nitrophenol from aqueous solution.” Ph.D Thesis, Dept. of CivilEng.,University of Michigan,Michigan.
25- AWWA. (1990). Water quality and treatment, 4th Ed., McGraw- Hill Inc.,USA.