بازیافت آب از فاضلاب خاکستری مجتمع خوابگاهی دانشگاه شیراز با استفاده از بیوراکتور غشایی (MBR)

نوع مقاله : مطالعه موردی

نویسندگان

1 دانش‌آموخته دکترا، بخش عمران و محیط‌زیست، دانشگاه شیراز، شیراز، ایران

2 استاد، بخش عمران و محیط‌زیست، دانشگاه شیراز، شیراز، ایران

چکیده

با افزایش نیاز به آب و کمبود آب بهعلت افزایش جمعیت، کاهش نزولات جوی، مسائل اقتصادی و محیط‌زیستی، علاقه به بازیافت آب از فاضلاب بهعنوان منابع جدید آب مصرفی، افزایش پیدا کرده است. بازیافت آب از فاضلاب خاکستری میتواند بهعنوان یک راه‌حل پایدار، پاسخگوی افزایش نیاز آبی باشد. امروزه بیوراکتور غشایی بهعنوان یک فناوری نوین، عملکرد تصفیه فاضلاب را بهطور قابل‌توجهی بهبود بخشیده و کاربرد گستردهای در بازیافت و استفاده مجدد دارد، اما بهینهیابی این سیستم در تصفیه فاضلاب خاکستری کمتر مورد توجه قرار گرفته است. در این راستا، بهینهیابی زمان ماند هیدرولیکی سیستم بیوراکتور غشایی در بازیافت آب از فاضلاب خاکستری بررسی شد. برای انجام این پژوهش، ابتدا یک سیستم بیوراکتور غشایی مستغرق با حجم مفید بیوراکتور 10 لیتر ساخته شد و از یک مدول غشایی بهشکل الیاف توخالی از جنس پلی پروپایلن با سطح 2/0 مترمربع درون بیوراکتور استفاده شد. این سیستم بهمدت 160 روز با فاضلاب خاکستری مجتمع خوابگاهی دانشگاه شیراز بهصورت پیوسته بهره‌برداری شد و عملکرد این سیستم در 4 زمان ماند هیدرولیکی 3، 5، 7 و 9 ساعت در حدف نیتروژن آمونیاکی، مواد آلی، کدورت و مواد معلق بررسی شد. نتایج نشان داد سیستم بیوراکتور غشایی در تصفیه فاضلاب خاکستری، قادر به حذف بیش از 95 درصد COD، بیش از 5/99 درصد BOD5، بیش از 2/99 درصد مواد معلق، نیتریفیکاسیون کامل و تولید خروجی با COD کمتر از mg/L5/10، BOD5 کمتر از mg/L4/0، مواد معلق کمتر از mg/L6/0، نیتروژن آمونیاکی کمتر از mg/LasN3/0 و کدورت زیر NTU3/0 است. همچنین نتایج نشان داد که عملکرد سیستم بیوراکتور غشایی در حذف BOD5، COD، نیتروژن آمونیاکی کل، مواد معلق کل و کدورت تحت تأثیر کاهش زماند ماند هیدرولیکی از 9 ساعت به 3 ساعت نبود. به‌عنوان نتیجهگیری، سیستم بیوراکتور غشایی با زمان ماند هیدرولیکی بهینه 3 ساعت در تصفیه فاضلاب خاکستری بسیار کارآمد است و پساب خروجی این سیستم از نظر کیفیت فیزیکی و شیمیایی بهعنوان یک منبع آب پایدار در مصارف غیرشرب مانند فلاش تانک قابلیت استفاده را دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Water Recycling from Greywater of Shiraz University Dormitory by Membrane Bioreactor (MBR)

نویسندگان [English]

  • Hadi Falahati Marvast 1
  • Ayoub Karimi Jashni 2
1 PhD. Graduate, Dept. of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran
2 Prof., Dept. of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran
چکیده [English]

Interest in wastewater recycling as an alternative source has grown as a result of increased water demand, water shortage due to population increase, low rainfall, and economic and environmental issues. Water recycling from greywater can serve as a sustainable solution for water demands. Nowadays, membrane bioreactor systems have significantly improved treatment performance and have been widely used in water reuse and reclamation. However, optimization of the MBR system in greywater treatment has received less attention. In this context, an experimental investigation of the MBR for greywater reuse was considered to identify the optimal hydraulic retention time of the MBR system. The lab-scale MBR consisted of a bioreactor with a net volume of 10 L, containing one submerged polypropylene hollow fiber membrane module with an area of 0.2 m2. The lab-scale MBR was fed with greywater collected from a dormitory of Shiraz University and operated for 160 days. Four HRTs (3, 5, 7 and 9 h) were tested to investigate the performance of the MBR system on the removal of total ammonia nitrogen, organic matter, turbidity, and total suspended solid. The results showed that the MBR system could remove more than 95% of COD, 99.5% of BOD5, 99% TAN, and 99.2% of TSS from greywater. The COD, BOD5, TSS effluents, and turbidity were below 10.5 mg/L, 0.4 mg/L, 0.6 mg/L, and 0.3 NTU, respectively. The results also showed that the optimal HRT of the MBR system for greywater treatment was 3 h. In conclusion, the MBR system with optimal HRT of 3 h is highly efficient for greywater treatment and it could produce sustainable water for non-potable reuse such as toilet flushing reuse in terms of chemical–physical quality parameters.

کلیدواژه‌ها [English]

  • Membrane Bioreactor
  • Greywater
  • Water Recycling
  • Hydraulic Retention Time
  • Chemical Oxygen Demand
  • Nitrification
Abdel-Shafy, H. I., Al-Sulaiman, A. M. & Mansour, M. S. 2015. Anaerobic/aerobic treatment of greywater via UASB and MBR for unrestricted reuse. Water Science and Technology, 71, 630-637. https://doi.org/10.2166/wst.2014.504.
Albalawneh, A., Chang, T. K. & Alshawabkeh, H. 2017. Greywater treatment by granular filtration system using volcanic tuff and gravel media. Water Science Technology, 75, 2331-2341. https://doi.org/10.2166/wst.2017.102.
Alrousan, D., Afkhami, A., Bani-Melhem, K. & Dunlop, P. 2020. Organic degradation potential of real greywater using TiO2-based advanced oxidation processes. Water, 12, 2811. https://doi.org/10.3390/w12102811.
Andreo-Martínez, P., García-Martínez, N., Quesada-Medina, J. & Almela, L. 2017. Domestic wastewaters reuse reclaimed by an improved horizontal subsurface-flow constructed wetland: a case study in the southeast of Spain. Bioresource Technology, 233, 236-246. https://doi.org/10.1016/j.biortech.2017.02.123.
Ansari, K. & Shrikhande, A. 2019. Feasibility of grey water treatment by electrocoagulation process: a review. International Journal on Emerging Technologies, 10, 85-92.
Atanasova, N., Dalmau, M., Comas, J., Poch, M., Rodriguez-Roda, I. & Buttiglieri, G. 2017. Optimized MBR for greywater reuse systems in hotel facilities. Journal of Environmental Management, 193, 503-511. https://doi.org/10.1016/j.jenvman.2017.02.041.
Baird, R., Eaton, A. D., Rice, E. W., Bridgewater, L. & Federation, W. E. 2017. Standard Methods for the Examination of Water and Wastewater, American Public Health Association Pub., Washington DC, USA. https://books.google.com/books?id=V2LhtAEACAAJ.
Bani-Melhem, K., Al-Qodah, Z., Al-Shannag, M., Qasaimeh, A., Qtaishat, M. R. & Alkasrawi, M. 2015. On the performance of real grey water treatment using a submerged membrane bioreactor system. Journal of Membrane Science, 476, 40-49. https://doi.org/10.1016/j.memsci.2014.11.010.
Bouhabila, E. H., Aı̈m, R. B. & Buisson, H. 2001. Fouling characterisation in membrane bioreactors. Separation and Purification Technology, 22, 123-132. https://doi.org/10.1016/S1383-5866(00)00156-8.
Cao, J. H., Zhu, B. K., Lu, H. & Xu, Y. Y. 2005. Study on polypropylene hollow fiber based recirculated membrane bioreactor for treatment of municipal wastewater. Desalination, 183, 431-438. https://doi.org/10.1016/j.desal.2005.02.056.
Chae, S. R., Kang, S. T., Lee, S. M., Lee, E. S., Oh, S. E., Watanabe, Y., et al. 2007. High reuse potential of effluent from an innovative vertical submerged membrane bioreactor treating municipal wastewater. Desalination, 202, 83-89. https://doi.org/10.1016/j.desal.2005.12.042.
Cheng, C., Zhou, Z., Pang, H., Zheng, Y., Chen, L., Jiang, L. M., et al. 2018. Correlation of microbial community structure with pollutants removal, sludge reduction and sludge characteristics in micro-aerobic side-stream reactor coupled membrane bioreactors under different hydraulic retention times. Bioresource Technology, 260, 177-185. https://doi.org/10.1016/j.biortech.2018.03.088.
De Luca, G., Sacchetti, R., Leoni, E. & Zanetti, F. 2013. Removal of indicator bacteriophages from municipal wastewater by a full-scale membrane bioreactor and a conventional activated sludge process: implications to water reuse. Bioresource Technology, 129, 526-531. https://doi.org/10.1016/j.biortech.2012.11.113.
Dialynas, E. & Diamadopoulos, E. 2009. Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater. Desalination, 238, 302-311. https://doi.org/10.1016/j.desal.2008.01.046.
Diamantis, V. 2021. Performance of a micro-scale membrane reactor for greywater treatment at household level. Membranes, 11, 63. https://doi.org/10.3390/membranes11010063.
Diaz-Elsayed, N., Rezaei, N., Guo, T., Mohebbi, S. & Zhang, Q. 2019. Wastewater-based resource recovery technologies across scale: a review. Resources, Conservation and Recycling, 145, 94-112. https://doi.org/10.1016/j.resconrec.2018.12.035.
Falahati-Marvast, H. & Karimi-Jashni, A. 2020. A new modified anoxic-anaerobic-membrane bioreactor for treatment of real wastewater with a low carbon/nutrient ratio and high nitrate. Journal of Water Process Engineering, 33, 101054. https://doi.org/10.1016/j.jwpe.2019.101054.
Falahati-Marvast, H., Karimi-Jashni, A. & Rakhshandehroo, G. R. 2017. Effects of hydraulic retention time on the performance of a membrane bioreactor treating municipal wastewater. Journal of Water and Wastewater, 28(4), 93-102. (In Persian). https://doi.org/10.22093/wwj.2017.45876.
Falahti-Marvast, H. & Karimi-Jashni, A. 2015. Performance of simultaneous organic and nutrient removal in a pilot scale anaerobic–anoxic–oxic membrane bioreactor system treating municipal wastewater with a high nutrient mass ratio. International Biodeterioration and Biodegradation, 104, 363-370. https://doi.org/10.1016/j.ibiod.2015.07.001.
Friedler, E., Kovalio, R. & Galil, N. 2005. On-site greywater treatment and reuse in multi-storey buildings. Water Science and Technology, 51, 187-194. https://doi.org/10.2166/wst.2005.0366.
Gross, A., Shmueli, O., Ronen, Z. & Raveh, E. 2007. Recycled vertical flow constructed wetland (RVFCW) a novel method of recycling greywater for irrigation in small communities and households. Chemosphere, 66, 916-923. https://doi.org/10.1016/j.chemosphere.2006.06.006.
Gukelberger, E., Gabriele, B., Hoinkis, J. & Figoli, A. 2019. MBR and Integration with Renewable Energy Toward Suitable Autonomous Wastewater Treatment. In: Basile, A., Cassano, A. & Figoli, A. eds. Current Trends and Future Developments on (Bio-) Membranes. Elsevier. Chapter 14, 355-384. https://doi.org/10.1016/B978-0-12-813545-7.00014-3.
Hach, 2005. DR5000 Spectrophotometer: Procedures Manual, HACH Company, Germany.
Hasan, M. M., Shafiquzzaman, M., Nakajima, J., Ahmed, A. K. T. & Azam, M. S. 2015. Application of a low cost ceramic filter to a membrane bioreactor for greywater treatment. Water Environment Research, 87, 233-241. https://doi.org/10.1002/j.1554-7531.2015.tb00141.x.
Hu, M., Zhang, T., Stansbury, J., Dahab, M., Shi, J., Neal, J., et al. 2011. Treatment of greywater with shredded-tire biofilters and membrane bioreactors. World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability, California, USA. 1877-1887. https://doi.org/10.1061/41173(414)195.
Huang, S., Pooi, C. K., Shi, X., Varjani, S. & Ng, H. Y. 2020. Performance and process simulation of membrane bioreactor (MBR) treating petrochemical wastewater. Science of the Total Environment, 747, 141311. https://doi.org/10.1016/j.scitotenv.2020.141311.
Iorhemen, O. T., Hamza, R. A. & Tay, J. H. 2016. Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: membrane fouling. Membranes, 6(2), 33. https://doi.org/10.3390/membranes6020033.
Jefferson, B., Laine, A., Diaper, C., Parsons, S., Stephenson, T., Judd, S., et al. 2000. Water recycling technologies in the UK. Water and Environment Journal, 15(4), 282-286. https://doi.org/10.1111/j.1747-6593.2001.tb00355.x.
Jenssen, P. D., Krogstad, T., Paruch, A. M., Mæhlum, T., Adam, K., Arias, C. A., et al. 2010. Filter bed systems treating domestic wastewater in the Nordic countries – performance and reuse of filter media. Ecological Engineering, 36, 1651-1659. https://doi.org/10.1016/j.ecoleng.2010.07.004.
Judd, S. 2011. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment, 2nd Ed., Elsevier. UK.
Kalkan, Ç., Yapsakli, K., Mertoglu, B., Tufan, D. & Saatci, A. 2011. Evaluation of biological activated carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes. Desalination, 265, 266-273. https://doi.org/10.1016/j.desal.2010.07.060.
Kowalik, R., Latosińska, J., Metryka-Telka, M., Porowski, R. & Gawdzik, J. 2021. Comparison of the possibilities of environmental usage of sewage sludge from treatment plants operating with MBR and SBR technology. Membranes, 11, 722. https://doi.org/10.3390/membranes11090722.
Li, F., Wichmann, K. & Otterpohl, R. 2009. Review of the technological approaches for grey water treatment and reuses. Science of the Total Environment, 407, 3439-3449. https://doi.org/10.1016/j.scitotenv.2009.02.004.
Lu, W. & Leung, A. Y. 2003. A preliminary study on potential of developing shower/laundry wastewater reclamation and reuse system. Chemosphere, 52, 1451-1459. https://doi.org/10.1016/S0045-6535(03)00482-X.
Ma, D., Chen, L., Liu, C., Bao, C. & Liu, R. 2015. Biological removal of antiandrogenic activity in gray wastewater and coking wastewater by membrane reactor process. Journal of Environmental Sciences, 33, 195-202. https://doi.org/10.1016/j.jes.2015.01.019.
Metcalf, E. & Eddy, M. 2014. Wastewater Engineering: Treatment and Resource Recovery. 5th ed. McGraw-Hill, USA, Inc.
Mohammed, T. A., Birima, A. H., Noor, M. J. M. M., Muyibi, S. A. & Idris, A. 2008. Evaluation of using membrane bioreactor for treating municipal wastewater at different operating conditions. Desalination, 221, 502-510. https://doi.org/10.1016/j.desal.2007.02.058.
Naghizadeh, A., Mahvi, A., Mesdaghinia, A. & Alimohammadi, M. 2011. Application of MBR technology in municipal wastewater treatment. Arabian Journal for Science and Engineering, 36, 3-10. https://doi.org/10.1007/s13369-010-0007-7.
Nam, K., Heo, S., Rhee, G., Kim, M. & Yoo, C. 2021. Dual-objective optimization for energy-saving and fouling mitigation in MBR plants using AI-based influent prediction and an integrated biological-physical model. Journal of Membrane Science, 626, 119208. https://doi.org/10.1016/j.memsci.2021.119208.
Nguyen, X. C., Chang, S. W., Nguyen, T. L., Ngo, H. H., Kumar, G., Banu, J. R., et al. 2018. A hybrid constructed wetland for organic-material and nutrient removal from sewage: process performance and multi-kinetic models. Journal of Environmental Management, 222, 378-384. https://doi.org/10.1016/j.jenvman.2018.05.085.
Palmarin, M. J. & Young, S. 2019. Comparison of the treatment performance of a hybrid and conventional membrane bioreactor for greywater reclamation. Journal of Water Process Engineering, 28, 54-59. https://doi.org/10.1016/j.jwpe.2018.12.012.
Pathan, A. A., Mahar, R. B. & Ansari, K. 2011. Preliminary study of greywater treatment through rotating biological contactor. Mehran University Research Journal of Engineering and Technology, 30, 531-538.
Penn, R., Hadari, M. & Friedler, E. 2012. Evaluation of the effects of greywater reuse on domestic wastewater quality and quantity. Urban Water Journal, 9, 137-148. https://doi.org/10.1080/1573062X.2011.652132.
Pidou, M., Avery, L., Stephenson, T., Jeffrey, P., Parsons, S. A., Liu, S., et al. 2008. Chemical solutions for greywater recycling. Chemosphere, 71, 147-155. https://doi.org/10.1016/j.chemosphere.2007.10.046.
Pintilie, L., Torres, C. M., Teodosiu, C. & Castells, F. 2016. Urban wastewater reclamation for industrial reuse: an LCA case study. Journal of Cleaner Production, 139, 1-14. https://doi.org/10.1016/j.jclepro.2016.07.209.
Pollice, A., Laera, G., Saturno, D. & Giordano, C. 2008. Effects of sludge retention time on the performance of a membrane bioreactor treating municipal sewage. Journal of Membrane Science, 317, 65-70. https://doi.org/10.1016/j.memsci.2007.08.051.
Purnell, S., Ebdon, J., Buck, A., Tupper, M. & Taylor, H. 2016. Removal of phages and viral pathogens in a full-scale MBR: implications for wastewater reuse and potable water. Water Research, 100, 20-27. https://doi.org/10.1016/j.watres.2016.05.013.
Raček, J. 2020. Gray water reuse in urban areas. Management of Water Quality and Quantity. Springer. 195-217.
Rashidi, H., Ghaffarianhoseini, A., Ghaffarianhoseini, A., Nik Sulaiman, N. M., Tookey, J. & Hashim, N. A. 2015. Application of wastewater treatment in sustainable design of green built environments: a review. Renewable and Sustainable Energy Reviews, 49, 845-856. https://doi.org/10.1016/j.rser.2015.04.104.
Rosenberger, S., Krüger, U., Witzig, R., Manz, W., Szewzyk, U. & Kraume, M. 2002. Performance of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater. Water Research, 36, 413-420. https://doi.org/10.1016/S0043-1354(01)00223-8.
Santasmasas, C., Rovira, M., Clarens, F. & Valderrama, C. 2013. Grey water reclamation by decentralized MBR prototype. Resources, Conservation and Recycling, 72, 102-107. https://doi.org/10.1016/j.resconrec.2013.01.004.
Thanh, B. X., Berg, H., Nguyen, L. N. T. & Da, C. T. 2013. Effects of hydraulic retention time on organic and nitrogen removal in a sponge-membrane bioreactor. Environmental Engineering Science, 30, 194-199. https://doi.org/10.1089/ees.2012.0385.
Ucevli, O. & Kaya, Y. 2021. A comparative study of membrane filtration, electrocoagulation, chemical coagulation and their hybrid processes for greywater treatment. Journal of Environmental Chemical Engineering, 9, 104946. https://doi.org/10.1016/j.jece.2020.104946.
Verrecht, B., James, C., Germain, E., Birks, R., Barugh, A., Pearce, P., et al. 2012. Economical evaluation and operating experiences of a small-scale MBR for nonpotable reuse. Journal of Environmental Engineering, 138, 594-600. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000505.
Wang, H. C., Cui, D., Han, J. L., Cheng, H. Y., Liu, W. Z., Peng, Y. Z., et al. 2019. A2O-MBR as an efficient and profitable unconventional water treatment and reuse technology: a practical study in a green building residential community. Resources, Conservation and Recycling, 150, 104418. https://doi.org/10.1016/j.resconrec.2019.104418.
Xia, S., Guo, J. & Wang, R. 2008. Performance of a pilot-scale submerged membrane bioreactor (MBR) in treating bathing wastewater. Bioresource Technology, 99, 6834-6843. https://doi.org/10.1016/j.biortech.2008.01.044.
Zanetti, F., De Luca, G. & Sacchetti, R. 2010. Performance of a full-scale membrane bioreactor system in treating municipal wastewater for reuse purposes. Bioresource Technology, 101, 3768-3771. https://doi.org/10.1016/j.biortech.2009.12.091.