مدل شبیه‌سازی کمّی-کیفی اندرکنش آبراهه با سفره آب زیرزمینی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار دانشکده مهندسی عمران، دانشگاه صنعتی اصفهان

2 استاد دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران

3 دانشیار دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران

4 استاد دانشکده مهندسی عمران، دانشگاه صنعتی شریف

5 دانشیار دانشکده مهندسی عمران، دانشگاه صنعتی شریف

چکیده

شبیه‌سازی اندرکنش کمّی و کیفی آبراهه با سفره آب زیرزمینی به عنوان ابزاری کارآمد برای مدیریت حوضه‌های آبریز مطرح می‌باشد و از آنجا که تاکنون مدل‌های توزیعی ارائه شده در مقیاسهای بزرگ به طور مجزا در نظر گرفته شده و در بیشتر موارد فقط اندرکنش‌های کمّی اعمال ‌گردیده، هدف اصلی این تحقیق تلفیق زیرمدل‌های چهارگانه به صورت توزیعی در مقیاسهای بزرگ می باشد. در این تحقیق جریان در آبراهه نادائمی، یک بعدی و در لایه آبدار اشباع سه بعدی و نادائمی فرض شده است. فرآیندهای انتقال، پخشیدگی، واکنش‌های شیمیایی و جذب به صورت پیوسته در محیط متخلخل و آبراهه در نظر گرفته شده است. براساس تحقیقاتی که تاکنون انجام شده، مدل اندرکنشی همزمان (مزدوج) جهت حل معادلات کیفی آبراهه با آبهای زیرزمینی ارائه نشده است و در این تحقیق نیز تلفیق کیفی این دو زیرمدل به صورت غیرمزدوج به صورت اعمال شرایط مرزی و اولیه حاصل از نتیجه اجرای مدل شبیه‌سازی کیفی آبراهه جهت اجرای مدل شبیه‌سازی کیفی آبهای زیرزمینی انجام گرفته شده است. مرحله تصدیق مدل نیز انجام و جوابهای مدل با جوابهای تحلیلی موجود مورد مقایسه قرار گرفته است. نتایج نشان می‌دهد که تفاوت نسبی جوابهای تحلیلی با مدل کمتر از 2 درصد می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

A Quality-Quantity Simulation Model for Stream-Aquifer Interaction

نویسندگان [English]

  • Hamidreza Safavi 1
  • Abbas Afshar 2
  • Abbas Ghaheri 3
  • Ahmad Abrishamchi 4
  • Masoud Tajrishi 5
1 Assistant Professor of Civil Engineering, Isfahan University of Technology
2 Professor of Civil Engineering, Iran University of Science and Technology
3 Associate Professor of Civil Engineering, Iran University of Science and Technology
4 Professor of Civil Engineering, Sharif University of Technology
5 Associate Professor of Civil Engineering, Sharif University of Technology
چکیده [English]

Traditional lumped and conceptual hydrological models are appropriate for dealing with certain aspects of a major portion of current water resources management. However, more advanced tools are required for integrated water resources management. In this research, an integrated model to account for qualitative and quantitative stream-groundwater interactions is developed for application in large-scale, integrated, water resources management. One of the challenges in understanding the interactions between stream and groundwater systems lies in their different time scales. In this paper, the stream quantity model is developed and is embedded into groundwater quantity model using the couple method. Then the stream quality model and the groundwater quality model are integrated using an uncouple approach, with mesh generation to ensure stability of the numerical method. Confirmation of the coupled-uncoupled model was examined using analytical solution from previous studies.

کلیدواژه‌ها [English]

  • Stream
  • Groundwater Aquifer
  • Water Quality
  • Interaction
  • Numerical Solution
1- Atkinson, J.F., and Gupta, S.K. (1998). “Linking hydrodynamic and water quality models  with different scales.” J. Water Resources Research, 31(5), 857-867.
2- Hubbert, M.K. (1940). “The theory of groundwater motion.”  J. Geol., 48, 785-944.
3- Toth, J. (1963). “A theoretical analysis of groundwater flow in small drainage basin.”
J. Geophys. Res.,
68, 4785-4812.
4- Allen, T.F.H., and Starr, T.B. (1982). Hierarchy perspective for ecological complexity, University ofChicago press, Chicago.
 5- Klemes, V. (1983). “Conceptualization and scale in hydrology.” J. Hydro., 65, 1-23.
6- O’Neill, R.V., DeAngeles, D.L., and Waide, J. B. (1986). A hierarchical concept of ecosystems,PrincetonUniversity  Press,Princeton.
7- Grimm, N.B., and Fishers, S.G. (1991). Responses of arid-land streams to changing climate, Springer Berlin Heidelberg, New York, 211-233.
8- Wu, J., and Loucks, O.L. (1995). “From balance-of- nature to hierarchical patch dynamics: A paradigm shift in ecology.” Quarterly Rev. Biol., 70, 439-466.
9- Stanley, E. H., Fisher, S.G., and Grimm, N. B. (1997). “Ecosystem expansion and contraction in streams.Bioscience, 47 (7), 427-435.
10- Abbott, M. B., Bathurst, J.C., Cunge, J.A., and O’Connell, P.E. (1986). “An introduction to the Europen Hydrological System, SHE, 2: structure of physically-based distributed modeling system.” J. Hydrology, (87), 61-77.
11- Grayson, R.B., Moore, I.D., and McMahon, T.A. (1992). “Physically based hydrologic modeling. 1.A Terrain-based model for investigative purposes.” Water Resources Research,
28 (10), 2639-2658.
12- Loucks, D.P., French, P.N., and Taylor, M.R. (1995). Interactive river-aquifer simulation model: program description, CornellUniversity,Ithaca,NY.
13- Querner, E.P. (1997). “Description and application of the combined surface and groundwater flow model MOGROW.” J. Hydrol., 192, 158-188.
14- Sophocleous, M. (2002). “Interactions between groundwater and surface water: the state of the science. ” Hydrogeology Journal, 10, 52-67.
15- Croton, J.T., and Bari, M.A. (2001). “WEC-C: a distributed, deterministic catchment model- theory, formulation and testing.” J. Environmental Modeling and Software, 16, 583-599.
16- Pandy, S., and Huyakorn, P. S. (2004). “A fully coupled physically-based spatially-distributed model for evaluating surface-subsurface flow.” J. Advances  in Water Resources, 27, 361- 382.
17- Kashef, A. A. I. (1987). Groundwater engineering,  McGraw-Hill Inc.,New York.
18- Fetter, C. W. (1993). Contaminant hydrogeology, Macmillan Publishing Company,New York.
19- Bear, J., and Verruijt, A. (1987). Modeling groundwater flow and transport, D. Reidel Pub. Co.,Dordrecht,Holland.
20- Fried, J. J. (1975). Groundwater pollution,Elsevier,New York.
21- Anderson, M. P. (1979). Models to simulate the movement of contaminants through groundwater flow systems, CRC Cirt. Rev. Environ. Control, 9, 97-156.
 22- Sudicky, E. A., and Cherry, J. A. (1997). “Field observations of tracer dispersion under natural flow conditions in an unconfined sandy aquifer.” Water Polut. Res. Can., 14, 1-17.
23- Dieulin, A., Beaudoin, B., and De Marsily, G. (1980). Sur le transfert de' elements en solution dons un aquifere alluvionnaire structure, C. R. Hebd. Seances Acad. Sci. Ser. D, 805-808.
24- Warren, G. E., and Skiba, F. F. (1964). “Macroscopic dispersion.” Trance. Am. Inst. Min. Metall. Pet. Eng., 231, 215-230.
25- Heller, J. P. (1972). “Observations of mixing and diffusion in porous media.” Proc. Symp. Fundam. Transp. Phenom. Porous Media, 2nd,Alberta, l, 1-26.
26- Schwartz, F. W. (1977). “Macroscopic dispersion in porous media: the controlling factors.” Water Resources Research, 13(4), 743-752.
27- Gelhar, L. W., Gutjahr, A. L., and Naff, R.L. (1979). “Stochastic analysis of macrodispersion in a stratified aquifer.” Water Resources Research, 15(6), 1387-1397.
28- Smith, L., and Schwartz, F.W. (1980). “Mass transport, 1. A stochastic analysis of macroscopic dispersion.” Water Resources Research, 16(2), 303-313.
29- Matheron, G., and Demarsily, G. (1980). “Is transport in porous media always diffusive a counter example.” Water Resources Research, 16(5), 901-917.
30- Dagan, G., (1982). “Stochastic modeling of groundwater flow by unconditional and conditional probabilities, 2. The solute transport.” Water Resources Research, 18(4), 835-848.
31- Gelhar, L.W., and Axness, C.L. (1983). “Three-dimensional stochastic analysis of macrodispersion in aquifers.” Water Resources Research, 19(1), 161-180.
32- McDonald, M.G., and Harbaugh, A.W. (1988). A modular three-dimensional finite–differences groundwater flow model, US Geological Survey, Techniques of Water Resources Investigations, Book 6, Ch. A1, 586.
33- Safavi, H.R., Afshar, A., Marino, M.A., and Ghaheri, A. (2004). “A coupled surface-water and groundwater flow model.” Iranian J. of Scis. and Tech., 28, B1, 137-144.
34- Zheng, Ch., and Wang, P.P. (1998). MT3DMS documentation and user’s guide,University ofAlabama,Tuscaloosa,Alabama.
35- Abbott, M.B., and Cunge, J.A. (1982). Engineering applications of computational hydraulics, Pitman Advanced Publ. Program,London.
36- Reckhow, K.H., and Chapra, S.C.(1983). “Confirmation of water quality models.” Ecol. Modell., 20, 111-133.
37- Oresjes, N., Shrader-Frechette, K., and Belitz, K. (1994). “Verification, validation, and confirmation of numerical models in the earth sciences.” Sciences, 263, 641-646.
38- Chapra, S. C. (2003). “Engineering water quality models and TMDLs.” J. of water Res. Plan. and  Manag., 247-256.
 39- Sudicky, E.A. (1989). “The Laplace transform Galerkin technique: a time-continuous finite element theory and application to mass transport in groundwater.” Water Resources Research, 25 (8), 1833-1846.