ارزیابی منحنی مشخصه آب و خاک بر اساس تئوری تخلخل موضعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار دانشکده مهندسی، بخش مهندسی راه و ساختمان، دانشگاه شیراز

2 دانشجوی دکترای بخش مهندسی راه و ساختمان، دانشگاه شیراز

چکیده

مدل‌سازی محدوده غیر اشباع خاک و به طور مشخص تعیین منحنی مشخصه آب-خاک نقشی اساسی در مکانیک خاکهای غیر اشباع ایفا می‌کند. این منحنی به عوامل متعددی از جمله اندازه و منحنی دانه‌بندی ذرات بستگی دارد. یک روند محاسباتی قابل قبول در ارزیابی منحنی مشخصه آب-خاک، مدل‌سازی منحنی توزیع حفرات خاک بر اساس منحنی دانه‌بندی می‌باشد. در این مقاله، یک مدل برای در نظر گرفتن تخلخل موضعی متغیر در خاکهای دانه‌ای ریز با منحنی‌های مختلف دانه‌بندی ارائه گردیده و تأثیر آن در ارزیابی منحنی مشخصه آب-خاک بررسی شده است. مقایسه نتایج مدل حاضر با داده‌های آزمایشگاهی نشان داد که مدل ارائه شده، و به طور خاص وابستگی مستقیمِ تخلخل موضعی با اندازه ذرات در خاکهای دانه‌ای ریز، پیش‌بینی دقیق‌ترِ منحنی مشخصه آب-خاک از طریق منحنی دانه‌بندی آن را امکان‌پذیر می‌سازد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating Soil-Water Characteristic Curve Based on Local Porosity Theory

نویسندگان [English]

  • Golamreza Rakhshandehroo 1
  • Abbas Eslami Haghighat 2
1 Associate Professor, Department of Civil Engineering, Faculty of Engineering, Shiraz University
2 Ph.D. Student, Department of Civil Engineering, Shiraz University
چکیده [English]

Modeling vadose zone, particularly the soil water characteristic curve, plays an essential role in unsaturated soil mechanics. This curve depends on such factors as particle size and distribution. A computational procedure acceptable for the assessment of the soil-water characteristic curve is modeling pore size distribution from particle size distribution. In this paper, a model is proposed that considers the variation in local void ratio and evaluates its effect on the soil-water characteristic curve in granular soils with different particle size distributions. Comparison of the results with experimental data shows that the model will predict the soil-water characteristic curve more accurately if a direct relation is established between local void ratio and particle size.

کلیدواژه‌ها [English]

  • Vadose Zone
  • Local Void Ratio
  • Particle Size Distribution (PSD)
  • Soil Water Characteristic Curve (SWCC)
1- Sims, P. H., and Yanful, E. K. (2002). “Predicting soil-water characteristic curve of compacted plastic soils from measured pore-size distribution.” Geotechnique, 52 (4), 269-278.
2- Arya, L. M., and Paris, J. F. (1981). “A physicoempirical model to predict soil moisture characteristics from particle-size distribution and bulk density data.” Soil Sci. Soc. Am. J., 45 (6), 1023-1030.
3- Tyler, S. W., and Wheatcraft, S. W. (1988). “Application of fractal mathematics to soil water retention estimation.” Soil Sci. Soc. Am. J., 53 (4), 987-996.
4- Rieu, M., and Sposito, G. (1991). “Fractal fragmentation, soil porosity, and water properties: I.Theory.” Soil Sci. Soc. Am. J., 55 (5), 1231-1238.
5- Arya, L. M., Leij, F. J., Van Genuchten, M. T., and Shouse, P. J. (1999). “Scaling parameter to predict the soil water characteristic from particle-size distribution data.” Soil Sci. Soc. Am. J., 63 (3), 510-519.
6- Fredlund, M. D., Fredlund, D. G., and Wilson, G. W. (1997). “Prediction of the soil-water characteristic curve from grain-Size distribution and volume-mass properties.” Brazilian Symposium on Unsaturated Soils, Rio de Janeiro, Brazil.
7- Aubertin, M., Mbonimpa, M., Bussière, B., and Chapuis, R. P. (2003). “A model to predict the water retention curve from basic geotechnical properties.” Can. Geotech. J., 40 (6), 1104–1122.
8- Johari, A., Habibagahi, G., and Ghahramani, A. (2006). “Prediction of soil-water characteristic curve using genetic programming.” Journal of Geotechnical and Geoenvironmental Engineering, 132 (5), 661-665.
9- Arya, L. M., Leij, F. J., Shouse, P. J., and Van Genuchten, M. T. (1999). Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci. Soc. Am. J., 63 (5), 1063-1070.
10- Gimenez, D., Perfect, E., Rawls, W. J., and Pachepsky, Y. (1997). Fractal model for predicting soil hydraulic properties. Engineering Geology, 48 (3), 161-183.
11- Vereecken, H. (1995). Estimating the unsaturated hydraulic conductivity from theoretical models using simple soil properties. Geoderma, 65 (1), 81-92.
12- Schaap, M. G., and Lebron, I. (2001). “Using microscope observations of thin section to estimate soil permeability with the kozeny-carman equation.” Journal of Hydrology, 251 (3), 186-201.
13- وفائیان، م. (1376). خواص مهندسی خاک، انتشارات ارکان، اصفهان.
14- Fredlund, D. G., and Rahardjo, H. (1993). Soil mechanics for unsaturated soils, John Wiley and sons, New York.
15- Basile, A., and D'urso, G. (1997). Experimental correction of simplified methods for predicting water retention curve in clay-loamy soils from particle-size determination. Soil Technology, 10 (3), 261-272.
16- ابن جلال، ر.، و شفیعی بجستان، م. (1370). اصول نظری و عملی مکانیک خاک، انتشارات دانشگاه شهید چمران، اهواز.
17- Limin, Z., and Qun, C. (2005). “Predicting bimodal soil–water characteristic curves. Journal of Geotechnical and Geoenvironmental Engineering, 131 (5), 666-670.
18- Fredlund, D. G., and  Anqing, X. (1994). “Equations for the soil water characteristic curve.” Canadian Geotechnical Journal, 31 (4), 531-532.
19- Fredlund, D. G., Anqing, X., and Shangyan, H. (1994). “Predicting the permeability function for unsaturated soils using the soil water characteristic curve.” Canadian Geotechnical Journal, 31 (4), 533-546.